Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.412
Filter
1.
Glob Heart ; 19(1): 42, 2024.
Article in English | MEDLINE | ID: mdl-38708404

ABSTRACT

Physical inactivity is a leading contributor to increased cardiovascular morbidity and mortality. Almost 500 million new cases of preventable noncommunicable diseases (NCDs) will occur globally between 2020 and 2030 due to physical inactivity, costing just over US$300 billion, or around US$ 27 billion annually (WHO 2022). Active adults can achieve a reduction of up to 35% in risk of death from cardiovascular disease. Physical activity also helps in moderating cardiovascular disease risk factors such as high blood pressure, unhealthy weight and type 2 diabetes. For people with cardiovascular disease, hypertension, type 2 diabetes and many cancers, physical activity is an established and evidence-based part of treatment and management. For children and young people, physical activity affords important health benefits. Physical activity can also achieve important cross-sector goals. Increased walking and cycling can reduce journeys by vehicles, air pollution, and traffic congestion and contribute to increased safety and liveability in cities.


Subject(s)
Cardiovascular Diseases , Exercise , Humans , Exercise/physiology , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/epidemiology , Global Health , Morbidity/trends , Risk Factors
2.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709031

ABSTRACT

Complications after lung transplantation are largely related to the host immune system responding to the graft. Such immune responses are regulated by crosstalk between donor and recipient cells. A better understanding of these processes relies on the use of preclinical animal models and is aided by an ability to study intra-graft immune cell trafficking in real-time. Intravital two-photon microscopy can be used to image tissues and organs for depths up to several hundred microns with minimal photodamage, which affords a great advantage over single-photon confocal microscopy. Selective use of transgenic mice with promoter-specific fluorescent protein expression and/or adoptive transfer of fluorescent dye-labeled cells during intravital two-photon microscopy allows for the dynamic study of single cells within their physiologic environment. Our group has developed a technique to stabilize mouse lungs, which has enabled us to image cellular dynamics in naïve lungs and orthotopically transplanted pulmonary grafts. This technique allows for detailed assessment of cellular behavior within the vasculature and in the interstitium, as well as for examination of interactions between various cell populations. This procedure can be readily learned and adapted to study immune mechanisms that regulate inflammatory and tolerogenic responses after lung transplantation. It can also be expanded to the study of other pathogenic pulmonary conditions.


Subject(s)
Intravital Microscopy , Lung Transplantation , Animals , Mice , Intravital Microscopy/methods , Lung Transplantation/methods , Lung/immunology , Lung/diagnostic imaging , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods
3.
Cancer Immunol Res ; 12(4): 387-392, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38562082

ABSTRACT

Cancer prevention and early detection, the first two of the eight primary goals of the National Cancer Plan released in April 2023, are at the forefront of the nation's strategic efforts to reduce cancer incidence and mortality. The Division of Cancer Prevention (DCP) of the NCI is the federal government's principal component devoted to promoting and supporting innovative cancer prevention research. Recent advances in tumor immunology, cancer immunotherapy, and vaccinology strongly suggest that the host immune system can be effectively harnessed to elicit protective immunity against the development of cancer, that is, cancer immunoprevention. Cancer immunoprevention may be most effective if the intervention is given before or early in the carcinogenic process while the immune system remains relatively uncompromised. DCP has increased the emphasis on immunoprevention research in recent years and continues to expand program resources and interagency collaborations designed to facilitate research in the immunoprevention field. These resources support a wide array of basic, translational, and clinical research activities, including discovery, development, and validation of biomarkers for cancer risk assessment and early detection (Early Detection Research Network), elucidation of biological and pathophysiological mechanistic determinants of precancer growth and its control (Translational and Basic Science Research in Early Lesions), spatiotemporal multiomics characterization of precancerous lesions (Human Tumor Atlas Network/Pre-Cancer Atlas), discovery of immunoprevention pathways and immune targets (Cancer Immunoprevention Network), and preclinical and clinical development of novel agents for immunoprevention and interception (Cancer Prevention-Interception Targeted Agent Discovery Program, PREVENT Cancer Preclinical Drug Development Program, and Cancer Prevention Clinical Trials Network).


Subject(s)
Antineoplastic Agents , Cancer Vaccines , Neoplasms , Humans , Cancer Vaccines/therapeutic use , Immunotherapy , Neoplasms/prevention & control , Biomarkers
4.
Sci Data ; 11(1): 339, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580669

ABSTRACT

Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.


Subject(s)
Metagenome , Microbiota , Populus , Transcriptome , Fungi/genetics , Gene Expression Profiling , Genotype , Populus/genetics , Soil
5.
Neurosci Conscious ; 2024(1): niae007, 2024.
Article in English | MEDLINE | ID: mdl-38562605

ABSTRACT

Self-esteem, the evaluation of one's own worth or value, is a critical aspect of psychological well-being and mental health. In this paper, we propose an active inference account of self-esteem, casting it as a sociometer or an inferential capacity to interpret one's standing within a social group. This approach allows us to explore the interaction between an individual's self-perception and the expectations of their social environment.When there is a mismatch between these perceptions and expectations, the individual needs to adjust their actions or update their self-perception to better align with their current experiences. We also consider this hypothesis in relation with recent research on affective inference, suggesting that self-esteem enables the individual to track and respond to this discrepancy through affective states such as anxiety or positive affect. By acting as an inferential sociometer, self-esteem allows individuals to navigate and adapt to their social environment, ultimately impacting their psychological well-being and mental health.

6.
Clin Epigenetics ; 16(1): 38, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431614

ABSTRACT

BACKGROUND: Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aß40, Aß42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS: Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aß40 and Aß42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS: The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (ß = 0.581, p < 0.001) than Factor A (ß = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (ß = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS: This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.


Subject(s)
Alzheimer Disease , Dementia , Stress Disorders, Post-Traumatic , Humans , Epigenome , DNA Methylation , Apolipoprotein E4/genetics , Stress Disorders, Post-Traumatic/genetics , Biomarkers , Dementia/genetics , Alzheimer Disease/genetics , Carrier Proteins/genetics
7.
J Biomech ; 165: 112017, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428374

ABSTRACT

A study was undertaken to determine how well contacting fracture fragments of composite bone replicated the behavior of fracture fragments in real bone. Ten composite and ten real humeral diaphyses were transected and reconstructed with limited-contact dynamic-compression plates. Two screws were placed on each side of the transection site and a calibrated electronic sensor sheet was placed between the imitated fracture fragments. After insertion of the distal screws, pressure measurements were made during insertion of the first proximal screw in compression mode, during insertion of the second screw in compression mode after loosening the first screw, and finally after retightening the first screw. The process was repeated after bending the plate. The contact area, the net compression force and the average compressive stress were computed and statistically compared. The composite bone and cadaveric bone differed in contact area and compressive stress but not in net compressive force. Plate bending did not produce a significant difference between composite and cadaveric bone. The results indicate that composite bone does not reproduce all the local fracture fragment conditions so that hardware testing in composite bone should proceed carefully. A gap between fracture fragments as is often used in comminuted fracture tests may remain as the most appropriate situation for fracture hardware testing.


Subject(s)
Fracture Fixation, Internal , Humeral Fractures , Humans , Fracture Fixation, Internal/methods , Biomechanical Phenomena , Humeral Fractures/surgery , Humerus , Bone Plates , Cadaver
8.
J Food Prot ; 87(4): 100258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428462

ABSTRACT

The objective of this study was to compare preharvest monitoring strategies by evaluating three different sampling methods in the lairage area to determine pathogen recovery for each sampling method and incoming pathogen prevalence from the cattle to inform in-plant decision making. Samples were gathered over a 5-month period, from February to June 2022, at a harvesting and processing facility located in Eastern Nebraska. Sampling methods included (i) fecal pats, (ii) boot swabs, and (iii) MicroTally swab. A total of 329 samples were collected over the study period (fecal pats: n = 105, boot swabs: n = 104, and MicroTally swabs: n = 120). Specific media combinations, an incubation temperature of 42°C, and incubation timepoints (18-24 h) were utilized for each matrix and the prevalence of Salmonella, Escherichia coli O157:H7, and six non-O157 Shiga-toxin producing E. coli (STEC) was evaluated using the BAX system Real-Time PCR assay. Overall, results from the study concluded that boot swabs were an effective sampling method for pathogen detection in the cattle lairage area. Boot swabs (97.1%) were statistically more likely to detect for Salmonella (p < 0.05) when compared to fecal pats (67.6%) and MicroTally swab (77.5%) methods. For E. coli O157:H7 and STEC - O26, O121, O45, and O103 prevalence, boot swabs were significantly better at detecting for these pathogens (p < 0.05) than MicroTally swabs (OR = 3.16 - 11.95) and a comparable sampling method to fecal pats (OR = 0.93 - 2.01, p > 0.05). Lastly, all three sampling methods detected a very low prevalence for E. coli O111 and O145; therefore, no further analysis was conducted. The boot swab sampling method was strongly favored because they require little training to implement, are inexpensive, and they do not require much sampling labor; therefore, would be a simple and effective sampling method to implement within the industry to evaluate pathogen prevalence preharvest.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Cattle , Animals , Escherichia coli Infections/veterinary , Feces , Salmonella , Food Microbiology
9.
Neurosci Conscious ; 2024(1): niae008, 2024.
Article in English | MEDLINE | ID: mdl-38504826

ABSTRACT

Social media is implicated today in an array of mental health concerns. While concerns around social media have become mainstream, little is known about the specific cognitive mechanisms underlying the correlations seen in these studies or why we find it so hard to stop engaging with these platforms when things obviously begin to deteriorate for us. New advances in computational neuroscience, however, are now poised to shed light on this matter. In this paper, we approach the phenomenon of social media addiction through the lens of the active inference framework. According to this framework, predictive agents like us use a 'generative model' of the world to predict our own incoming sense data and act to minimize any discrepancy between the prediction and incoming signal (prediction error). In order to live well and be able to act effectively to minimize prediction error, it is vital that agents like us have a generative model, which not only accurately reflects the regularities of our complex environment but is also flexible and dynamic and able to stay accurate in volatile and turbulent circumstances. In this paper, we propose that some social media platforms are a spectacularly effective way of warping an agent's generative model and of arresting the model's ability to flexibly track and adapt to changes in the environment. We go on to investigate cases of digital tech, which do not have these adverse effects and suggest-based on the active inference framework-some ways to understand why some forms of digital technology pose these risks, while others do not.

10.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38464306

ABSTRACT

Sterile tissue injury, such as by acute kidney injury, is common in the clinic and frequently associated with respiratory compromise and hypoxemia. We previously described signaling components released by the injured kidney that drive a remote inflammatory response in the lung. How this caused the resultant hypoxemia remained unclear. Here, we report that sterile kidney tissue injury induces rapid intravascular "neutrophil train" formation in lung capillaries, a novel form of neutrophil swarming. Rapid swarming is enhanced by decreased deformability of circulating neutrophils that impedes their lung capillary passage. Classical lung monocytes are required for neutrophil train formation and release CXCL2 to attract and retain stiffened neutrophils in lung capillaries which reduces capillary perfusion. We thus discovered a novel feature of kidney-lung crosstalk after sterile kidney tissue injury, capillary perfusion deficits that lead to reduced oxygenation despite proper alveolar function and ventilation, unlike in infectious inflammatory lung processes, such as bacterial pneumonia.

11.
J Neurophysiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478883

ABSTRACT

Neuronal signals mediated by the biogenic amine serotonin underlie critical survival strategies across the animal kingdom. This investigation examined serotonin-like immunoreactive neurons in the cerebral ganglion of the panpulmonate snail Biomphalaria glabrata, a major intermediate host for the trematode parasite Schistosoma mansoni. Five neurons comprising the cerebral serotonergic F (CeSF) cluster of B. glabrata shared morphological characteristics with neurons that contribute to withdrawal behaviors in numerous heterobranch species. The largest member of this group, designated CeSF-1, projected an axon to the tentacle, a major site of threat detection. Intracellular recordings demonstrated repetitive activity and electrical coupling between the bilateral CeSF-1 cells. In semi-intact preparations, the CeSF-1 cells were not responsive to cutaneous stimuli, but did respond to photic stimuli. A large FMRF-NH2-like immunoreactive neuron, termed C2, was also located on the dorsal surface of each cerebral hemiganglion near the origin of the tentacular nerve. C2 and CeSF-1 received coincident bouts of inhibitory synaptic input. Moreover, in the presence of 5HT they both fired rhythmically and in phase. As the CeSF and C2 cells of Biomphalaria share fundamental properties with neurons that participate in withdrawal responses in Nudipleura and Euopisthobranchia, our observations support the proposal that features of this circuit are conserved in Panpulmonata.

12.
Arterioscler Thromb Vasc Biol ; 44(4): 987-996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357820

ABSTRACT

BACKGROUND: BMS-986141 is a novel potent highly selective antagonist of PAR (protease-activated receptor) type 4. PAR4 antagonism has been demonstrated to reduce thrombus formation in isolation and in combination with factor Xa inhibition in high shear conditions in healthy people. We sought to determine whether PAR4 antagonism had additive antithrombotic effects in patients with coronary artery disease who were receiving antiplatelet therapy. METHODS: Forty-five patients with stable coronary heart disease and 10 healthy volunteers completed a phase 2a open-label 4-arm single-center study. Patients were allocated to 1 of 3 treatment arms for 7 days: (1) ticagrelor (90 mg BID), (2) aspirin (75 mg QD), or (3) the combination of ticagrelor and aspirin. Agonist-induced platelet aggregation, platelet activation, and ex vivo thrombus formation were measured before and 2 and 24 hours after a single oral 4-mg dose of BMS-986141 on the first study visit day in all participants. RESULTS: BMS-986141 demonstrated highly selective inhibition of PAR4-AP (agonist peptide)-induced platelet aggregation, P-selectin expression, and platelet-monocyte aggregate expression (P≤0.001 for all), which were unaffected by concomitant antiplatelet therapies. PAR4 antagonism reduced ex vivo thrombus area in high shear conditions in healthy volunteers (-21%; P=0.001) and in patients receiving ticagrelor alone (-28%; P=0.001), aspirin alone (-23%; P=0.018), or both in combination (-24%; P≤0.001). Plasma concentration of BMS-986141 correlated with PAR4-AP-induced platelet responses (P≤0.001 for all) and total thrombus area under high shear stress conditions (P≤0.01 for all). CONCLUSIONS: PAR4 antagonism has additive antithrombotic effects when used in addition to ticagrelor, aspirin, or their combination, in patients with stable coronary heart disease. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05093790.


Subject(s)
Coronary Artery Disease , Thrombosis , Humans , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/therapeutic use , Fibrinolytic Agents/therapeutic use , Coronary Artery Disease/metabolism , Aspirin , Platelet Aggregation , Blood Platelets/metabolism
13.
Nat Nanotechnol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366225

ABSTRACT

Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 µg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.

14.
J Alzheimers Dis Rep ; 8(1): 57-73, 2024.
Article in English | MEDLINE | ID: mdl-38312533

ABSTRACT

Background: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are typically associated with very different clinical and neuroanatomical presentations; however, there is increasing recognition of similarities. Objective: To examine memory and executive functions, as well as cortical thickness, and glucose metabolism in AD and bvFTD signature brain regions. Methods: We compared differences in a group of biomarker-defined participants with Alzheimer's disease and a group of clinically diagnosed participants with bvFTD. These groups were also contrasted with healthy controls (HC). Results: As expected, memory functions were generally more impaired in AD, followed by bvFTD, and both clinical groups performed more poorly than the HC group. Executive function measures were similar in AD compared to bvFTD for motor sequencing and go/no-go, but bvFTD had more difficulty with a set shifting task. Participants with AD showed thinner cortex and lower glucose metabolism in the angular gyrus compared to bvFTD. Participants with bvFTD had thinner cortex in the insula and temporal pole relative to AD and healthy controls, but otherwise the two clinical groups were similar for other frontal and temporal signature regions. Conclusions: Overall, the results of this study highlight more similarities than differences between AD and bvFTD in terms of cognitive functions, cortical thickness, and glucose metabolism. Further research is needed to better understand the mechanisms mediating this overlap and how these relationships evolve longitudinally.

16.
Res Sq ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38410438

ABSTRACT

Background: Incorporating genomic data into risk prediction has become an increasingly useful approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not. Methods: Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts. Results: The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p-0.003), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD. Conclusion: Results, especially those from the eMRS, reinforce earlier findings that methylation and trauma are interconnected and can be leveraged to increase the correct classification of those with vs. without PTSD. Moreover, our models can potentially be a valuable tool in predicting the future risk of developing PTSD. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting the condition and, relatedly, improve their performance in independent cohorts.

17.
Eur J Prev Cardiol ; 31(6): 688-697, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38175939

ABSTRACT

There is a growing recognition that the profound environmental changes that have occurred over the past century pose threats to human health. Many of these environmental factors, including air pollution, noise pollution, as well as exposure to metals such as arsenic, cadmium, lead, and other metals, are particularly detrimental to the cardiovascular health of people living in low-to-middle income countries (LMICs). Low-to-middle income countries are likely to be disproportionally burdened by cardiovascular diseases provoked by environmental factors. Moreover, they have the least capacity to address the core drivers and consequences of this phenomenon. This review summarizes the impact of environmental factors such as climate change, air pollution, and metal exposure on the cardiovascular system, and how these specifically affect people living in LMICs. It also outlines how behaviour changes and interventions that reduce environmental pollution would have significant effects on the cardiovascular health of those from LMICs, and globally.


Subject(s)
Air Pollution , Arsenic , Cardiovascular Diseases , Humans , Developing Countries , Environmental Exposure , Arsenic/analysis
18.
Anal Bioanal Chem ; 416(11): 2683-2689, 2024 May.
Article in English | MEDLINE | ID: mdl-38206347

ABSTRACT

Exposure to particles from air pollution has been associated with kidney disease; however, the underlying biological mechanisms are incompletely understood. Inhaled particles can gain access to the circulation and, depending on their size, pass into urine, raising the possibility that particles may also sequester in the kidney and directly alter renal function. This study optimised an inductively coupled plasma mass spectrometry (ICP-MS) method to investigate the size dependency of particle accumulation in the kidneys of mice following pulmonary instillation (0.8 mg in total over 4 weeks) to gold nanoparticles (2, 3-4, 7-8, 14 or 40 nm or saline control). Due to the smallest particle sizes being below the limit of detection in single particle mode, ICP-MS was operated in total quantification mode. Gold was detected in all matrices of interest (blood, urine and kidney) from animals treated with all sizes of gold nanoparticles, at orders of magnitude higher than the methodological limit of detection in biological matrices (0.013 ng/mL). A size-dependent effect was observed, with smaller particles leading to greater levels of accumulation in tissues. This study highlights the value of a robust and reliable method by ICP-MS to detect extremely low levels of gold in biological samples for indirect particle tracing. The finding that nano-sized particles translocate from the lung to the kidney may provide a biological explanation for the associations between air pollution and kidney disease.


Subject(s)
Air Pollution , Kidney Diseases , Metal Nanoparticles , Nanoparticles , Mice , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size , Mass Spectrometry
19.
J Neuroinflammation ; 21(1): 24, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233868

ABSTRACT

BACKGROUND: Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS: We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS: We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS: Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Olfactory Receptor Neurons , Humans , Mice , Animals , Encephalitis Virus, Venezuelan Equine/genetics , Central Nervous System , Virus Replication
20.
Arthroscopy ; 40(3): 868, 2024 03.
Article in English | MEDLINE | ID: mdl-38219120

ABSTRACT

Although recent studies have shown good results of anterior cruciate ligament primary repair at 2-year follow-up, one must be careful in adopting this technique. Historically, the classic study from West Point showed repair fails at 5 years. Perhaps future results will be improved with scaffolds, augmentation, or biologics. Only time will tell. For now, what's the (West) Point?


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Humans , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Follow-Up Studies , Anterior Cruciate Ligament Reconstruction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...